Git-Workshop
Fachschaft Informatik, HS Karlsuhe

Felix Birkle

Veréffentlicht unter der CreativeCommons-Lizenz (By, Nc, Sa)

Basierend auf Material von Julius Plenz
® @ @ https://github.com/Feh/git-workshop

https://github.com/Feh/git-workshop

Bevor wir beginnen . ..

» Wer verwendet Linux? — Windows? — Mac?

v

Wer arbeitet gelegentlich auf der Shell?

v

Wer hat momentan noch kein Git installiert?

v

Wer kennt oder hat schon mal eines der folgenden Systeme
benutzt?

» CVS/RCS

» SVN

» Mercurial, Darcs, Perforce, Bazaar

Wer kennt Git?

Wer hat schonmal ...

> git eingegeben

v

Ein Git-Repository selbst erstellt?

v

. oder geklont?

v

Einen Commit gemacht?

v

Per Git mit anderen Leuten zusammengearbeitet?

Der Plan

» Grundlegende Arbeitsschritte in Git

» Das Objektmodell — eine theoretische Grundlage
> Parallele Entwicklung: Branches und Merges

» Entwicklung koordinieren: Ein Branching-Modell
» Die Geschichte umschreiben: Rebase

» Verteiltes Git: Commits hoch- und runterladen

» Verschiedene Workflows

Motivation: Warum Versionskontrolle?

» Sicherheit: Versionskontrolle schiitzt vor Verlusten
» Dokumentation: Wer hat wann was gemacht?
» Fokussierung: Entwicklung logisch gliedern

» Kollaboration: Mit anderen Leuten an den gleichen Dateien
arbeiten

» Partizipation: Jeder kann mitmachen (GitHub etc.)

Interface

20ls Help
. & X [Repository Status & X [Actions & x
Modified S
_—
Er-[#) Untracked S|
; cheatsheet/cheats . | _Unstage |
[cheatsheet/cheats... Fetch..
- cheatsheet/cheats. ~Push. |
[folien/.git wiki.swp | ush |
folien/git.pdf Pul
o Sign Off g Commit 1,0 T~ Amend Last Commit Stash
Diff Viewer & x
68 -29,13 +29,16 00 titleframe=False
“end{center}
“end{frane}

Wer kennt wen?
Bevor wir beginnen \ldots

Wer kennt oder hat schon mal eines der folgenden Sustens benutzt?
—-% CWS/RCS
- S¥N

< |

Command Output __ Diff viewer [

Wer bin ich? — Name und E-Mail einstellen

» Fir alle Projekte (wird in “/.gitconfig gespeichert)

» git config --global user.name "Max Mustermann"
» git config --global user.email max@mustermann.de

> ... oder alternativ nur fiir das aktuelle Projekt:
» git config user.email maintainer@cool-project.org

» AuBerdem, fiir die, die wollen: Farbe!

» git config --global color.ui auto

Ein Projekt importieren oder erstellen

» Ein neues Projekt erstellt man wie folgt:
» mkdir projekt
» cd projekt
» git init

» Um ein bestehendes Projekt zu importieren, »klont« man es
mit seiner gesamten Versionsgeschichte:

» git clone git@github.com:fsi-hska/git-workshop.git

Begriffsbildung

» Index/Staging Area: Bereich zwischen dem
Arbeitsverzeichnis und dem Repository, in die Anderungen fiir
den nachsten Commit gesammelt werden

» Commit: Eine Anderung an einer oder mehrerer Dateien,
versehen mit Metadaten wie Autor, Datum und Beschreibung

» Repository: Eine Datenbank fir Commits, dort wird die
Versionsgeschichte aufgezeichnet

» Referenz: Jeder Commit wird durch eine eindeutige
SHA1-Summe identifiziert. Eine Referenz »zeigt« auf einen
bestimmten Commit

» Branch: Ein »Zweig«, eine Abzweigung im
Entwicklungszyklus, z. B. um ein neues Feature einzufiihren.

Ein typischer Arbeitsablauf

» Eine datei verandern, und die Anderungen in das Repository
neinchecken«:

$EDITOR datet
git status
git add datez

git commit -m ’date? angepasst’

oA~ b

git show

Index / Staging Area

> Im Index bzw. der Staging-Area werden Veranderungen fir
den nachsten Commit vorgemerkt

» So kann der Inhalt von einem Commit schrittweise aus
einzelnen Veranderungen zusammengestellt werden

Ausgangsstellung

» Alle auf dem gleichen Stand

Working-Tree Index

Repository

#!/usr/bin/python #!/usr/bin/python

print "Hello World!" print "Hello World!"

#!/usr/bin/python

print "Hello World!"

Veranderungen machen

» Veranderungen werden im Working-Tree gemacht

Working-Tree Index Repository
#!/usr/bin/python #!/usr/bin/python #!/usr/bin/python
print "Hello World!" print "Hello World!"

print "Hello World!"

Dem Index hinzufliigen — git add

» Die Veranderungen im Working-Tree — Index

Working-Tree Index Repository

#!/usr/bin/python #!/usr/bin/python #!/usr/bin/python
print "Hello World!"

print "Hello World!" print "Hello World!"

v

git add

Einen Commit erzeugen — git commit

» Alle Veranderungen im Index — Commit

Working-Tree Index Repository
#!/usr/bin/python #!/usr/bin/python #!/usr/bin/python
print "Hello World!" print "Hello World!" print "Hello World!"

v

git commit

Resultat

> Alle wieder auf dem gleichen Stand

Working-Tree

Index

Repository

#!/usr/bin/python
Autor: Felix

print "Hello World!"

#!/usr/bin/python
Autor: Felix

print "Hello World!"

#!/usr/bin/python
Autor: Felix

print "Hello World!"

Referenzen und ignorierte Dateien

Relative Referenzen:
» HEAD: Der letzte Commit (wird per git show angezeigt)
» HEAD": Der vorletzte Commit

» HEAD~N: Der N.-letzte Commit

Informationen liber das Repository erhalten

» Den jiingsten Commit im vollen Umfang anschauen:
» git show

> Die gesamte Versionsgeschichte, die zum aktuellen Zustand
fuhrt, anzeigen:

» git log

Woas hat sich verandert?
> git diff

v

v

Das Repository visualisieren:
> gitk
> gitg

> ... oder textbasiert:

> tig

Anderungen riickgangig machen

Einen neuen Commit erstellen, der eine alte Anderung riickgingig
macht:

> git revert commit

Den Index zuriicksetzen:
» git reset HEAD

Den Zustand von vor zwei Commits wiederherstellen:
» git checkout HEAD-~2

Die letzten zwei Commits unwiederbringlich [6schen:
> git reset --hard HEAD-~2

Branches: Abzweigungen

Wir arbeiten schon die ganze Zeit im master-Branch!

Was genau sind Branches? — Nichts anderes als Referenzen auf
den jeweils obersten Commit einer Versionsgeschichte.

Branches ...

> erstellen: git branch name

v

auschecken: git checkout name

v

erstellen und direkt auschecken: git checkout -b name

v

auflisten: git branch -v

v

|6schen: git branch -d name

Idealisierter Workflow: Ein Branch pro neuem Feature oder Bugfix.

Beispiel: Zwei Branches

Zwei Branches erstellen, und auf jedem einen Commit machen.
Dann das Resultat in gitk anschauen.

» git branch eins

» git checkout eins

» Commit machen

» git checkout master

» git checkout -b zwei

» Commit machen

» gitk --all

Beispielprojekt: Was wollen wir speichern

Angenommen, wir wollen folgendes Verzeichnis speichern:

hello.py
README
test/
L,test.sh

Objektmodell

» Blob: Enthalt den Inhalt einer Datei

» Tree: Eine Sammlung von Tree- und Blob-Objekten

» Commit: Besteht aus einer Referenz auf einen Tree mit
zusatzlichen Informationen

» Author und Commiter
» Parents
» Commit-Message

SHA-1 IDs

» Objekte werden mit SHA-1 IDs identifiziert
» Dies ist der Objekt-Name
» Wird aus dem Inhalt berechnet

» SHA-1 ist eine sogenannte Hash-Funktion; sie liefert fiir eine
Bit-Sequenz mit der maximalen Lange von 264 — 1 Bit (~2
Exbibyte) in eine Hexadezimal-Zahl der Lange 40 (d. h. 160
Bits)

» Die resultierende Zahl ist eine von 21%0(~ 1.5 . 10%9)
moglichen Zahlen und ziemlich einzigartig

#! /usr/bin/env python

SHA-1

"" Hello World! """ 52ea6d6f53b2990f5d6167553f43c98d68788e81)

print 'Hello World!'

Objektverwaltung

» Alle Objekte werden von Git in der Objektdatenbank (genannt
Repository) gespeichert

» Die Objekte sind durch ihre SHA-1 ID eindeutig adressierbar

» Fiir jede Datei erzeugt Git ein Blob-Objekt
» Fiir jedes Verzeichnis erzeugt Git ein Tree-Objekt

» Ein Tree-Objekt enthalt die Referenzen (SHAL IDs) auf die in
dem Verzeichnis enthaltenen Dateien

Zusammenfassung

Ein Git-Repository enthilt Commits; diese wiederum referenzieren
Trees und Blobs, sowie ihren direkten Vorganger

Repository (Commit C4)

\. S

Commits ____, referenziert
@ Trees
@ Blobs ~ — hat Vorfahre

Commit Graph

Ein Repository ist ein Gerichteter Azyklischer Graph
Engl.: Directed Acyclic Graph (DAG)

Branches und Tags
Branches und Tags sind Zeiger auf Knoten in dem Graphen.

(master][HEAD |

H
(ve.2] [bugfix]
/ /

F

G
o

!

B

0O «— O

vO.1

Graph-Struktur

» Die gerichtete Graph-Struktur entsteht, da in jedem Commit
Referenzen auf direkte Vorfahren gespeichert sind

> Integritat kryptographisch gesichert

» Git-Kommandos manipulieren die Graph-Struktur

Merging: Branches Zusammenfiigen

Simple Merge:

> git merge neues-feature

Fast-Forward Merge:

» Wird topic in master gemerget und topic basiert auf
master, dann wird kein Merge-Commit erstellt, sondern nur
der Zeiger »weitergeriickt« bzw. »vorgespult«.

Vor dem Merge

(o e ¢ >]
E F‘

> topic ist fertig und soll in master integriert werden

Nach dem Merge

[e Il
E F

» Im master ausfilhren: git merge topic

Vor dem Fast-Forward

Cr e |

¢ — o

> In master hat sich nichts getan, topic ist fertig

Nach dem Fast-Forward

[A & |

S

» master wird »weitergerlickt«, bzw. »vorgespult«

Hilfe, Konflikte!

Bei einem merge kann es zu Konflikten kommen. Wie geht man
damit um?

> $EDITOR konfliktdateien
> git add konfliktdateien
> git commit -m "Merge-Konflikt behoben"

Das Unterfangen abbrechen:
> git reset --hard HEAD

Einen Commit andern

» Commit andern = Neuen Commit erstellen, alten
wegschmeiBen

» Den letzten Commit (HEAD) andern:

1. $EDITOR datet
2. git add date<

3. git commit --amend

» Tiefer liegende Commits (HEAD~1 etc.) kdnnen so nicht
geandert werden!

Vor dem Rebase

’AHBHC D‘

E F ‘

> topic soll auf der neusten Version von master basieren

Nach dem Rebase

master

HHHX
m

> git rebase master topic

Rebase: Auf eine neue Basis bauen

» Rebase: Einen Branch auf eine »neue Basis« stellen.

master als neue Basis fiir topic

git checkout topic
git rebase master

Alternativ
git rebase master topic

Rebasing: eine Warnung

» Wichtig: Man darf niemals Commits aus einem bereits
veroffentlichten Branch — auf dem also woméglich Andere ihre
Arbeit basieren — durch git rebase verdndern!

» Daher: Nur Unverdffentlichtes gegen Veroffentlichtes
rebasen:
> git rebase origin/master
» git rebase v1.1.23

Hinaus in die weite Welt!

> Wir wollen unsere Arbeit mit der anderer Entwickler
austauschen!

» Durch die verteilte Architektur von git braucht es keinen
zentralen Server zu geben.

» Das Entwicklerteam muss sich auf einen Workflow einigen:

Shared Repository
Maintainer/Blessed Repository
Patch-Queue per E-Mail

. oder auch alles durcheinandergemixt.

v

vV vy

Zentralisiert

Zentrales
Repository

Entwickler
Repository

Entwickler
Repository

Entwickler
Repository

» Ein einziges zentrales Repository
» Alle Entwickler haben Schreibzugriff

Offentliche Entwickler-Repositories

0ffizielles Entwickler Entwickler
Repository Offentlich Offentlich

Projektleiter Entw;ckler EntW}ckler
Privat Privat

» Ein offentliches Repository pro Entwickler

» Der Projektleiter integriert Verbesserungen

Patch-Queue per Email

Gutiger

Diktator

Subsystem
Maintainer

A

Maintainer

Entwickler Entwickler

» Stark vom Kernel und Git selbst verwendet

Gesegnetes
Repository

Remote Repositories / Remote Branches

Remote Repositories verwalten:

>

>

>

>

git
git
git
git

>

remote -v
remote add name url

remote rm name

remote update

Fragt bei allen Remote Repositories an, ob es neue Commits
gibt. (Eigene Commits werden durch dieses Kommando nicht
veroffentlicht!)

Details der Repositories dndern (z. B. Vertipper):
» $EDITOR .git/config

Remote Branches auflisten:

» git branch -r

Remote Branches vs. Remote Tracking Branches

Remote-Branches

origin

——
git clone

Remote-Tracking-Branches

clone

origin/pu

master
origin/masten

Fremden Code holen, eigenen versenden

Aus einem anderen Repository neuen Code »ziehen«:
» git pull remote branch
» git pull blessed master

Was hinter den Kulissen passiert:
1. git fetch remote branch

2. git merge remote/branch

Eigene Commits »pushen« oder per E-Mail senden:
» git push remote branch

» git format-patch seit-wann

Konventionen

> Wiederholter Einsatz von git pull erzeugt viele unnétige
Merges
» Konvention:

> Nicht im master entwickeln
> git remote update, master immer Fast-Forwarden
» Eigene Branches per merge in master integrieren

FF-Merge erzwingen
git merge --ff-only origin/master
git config --global alias.fm ’merge --ff-only’

GitHub — ,,Social Coding"

» GitHub stellt Git-Repositories zur Verfligung
» Kostenlos und viel genutzt
» Web-basiertes Interface
» Aktionen , Fork", ,Follow" und ,Watch"

» Account erstellen:

» — http://www.github.com
» Authentifizierung per SSH-Schliissel (ggf. erstellen)

> Ein eigenes Repository hochladen:
» Repository auf GitHub erstellen
» git remote add githubd
ssh://git@github.com:user/projekt.git
» git push github master

HSKA und der Proxy

ssh LocalForward
» ssh -L 9222:github.com:22
$USERQ@login.hs-karlsruhe.de
» git clone
ssh://localhost:22/fsi-hska/git-workshop.git
SSH-ProxyCommand
» CL: ssh -o ProxyCommand="ssh -W %h:%p
mamil042@login.hs-karlsruhe.de" git@github.com
» ssh-config: ProxyCommand ssh -W %h:%p
mamil042@login.hs-karlsruhe.de

v

v

v

http.proxy in der git-config
» git config —-global http.proxy
http://mamil042:PASSWORD@proxy.hs-karlsruhe.de:8888

v

ssh-Tunnel mit tsocks oder sshuttle (linux-only)

Kar: Was noch fehlt

Rebase

v

» git stash

Remote Branches I6schen
Git-Aliase

» Tags

v

v

v

Reflog

Danke!

Vielen Dank fiir eure Teilnahme!

Fragen und Feedback gerne personlich oder per Mail:

mail@nicidienase.de

Bonus-Folien

Rebase Interaktiv

» Das ist Advanced Git Magic — und will gelibt sein!

» Rebase-Prozess anhalten, Commits »mittendrin« andern,
weiterlaufen lassen

Interaktives Rebase
git rebase -i master topic

» Anwendungsfille nur lokal und fiir die eigenen Commits
» Patch-Serie neu strukturieren
» Typos aus den eigenen Commits entfernen
» Offensichtliche Fehler glattbigeln

Rebase Interaktiv: Beispiele

Zwei Commits zusammenfassen
git rebase -i HEAD~n
— pick des zweiten Commits durch fixup ersetzen

» Einen Commit verschieben: Die Zeilen vertauschen
» Einen Commit editieren: mit edit markieren

» Einen Commit aufteilen: Siehe Cheatsheet

Whitespace und EOL

» Was ist kaputter Whitespace?
» git diff --check (z.B. — Hook)

» Zeilenende: Windows (CRLF) vs. UNIX (LF)

» core.eol bestimmt, was zu tun ist; 1f, crlf oder native

» Git-Attribut text fur Dateien, die automatisch konvertiert
werden sollen

» echo ’*.c text’ > .gitattributes

» core.safecrlf: Konvertierung verbieten, wenn ein Mix aus
CRLF und LF vorhanden ist

> Mehr Infos: gitattributes(5)

