
Git-Workshop
Fachschaft Informatik, HS Karlsuhe

Felix Bürkle

Veröffentlicht unter der CreativeCommons-Lizenz (By, Nc, Sa)

Basierend auf Material von Julius Plenz

https://github.com/Feh/git-workshop

https://github.com/Feh/git-workshop

Bevor wir beginnen . . .

I Wer verwendet Linux? – Windows? – Mac?
I Wer arbeitet gelegentlich auf der Shell?
I Wer hat momentan noch kein Git installiert?

I Wer kennt oder hat schon mal eines der folgenden Systeme
benutzt?

I CVS/RCS
I SVN
I Mercurial, Darcs, Perforce, Bazaar

Wer kennt Git?

Wer hat schonmal ...
I git eingegeben
I Ein Git-Repository selbst erstellt?
I ... oder geklont?
I Einen Commit gemacht?
I Per Git mit anderen Leuten zusammengearbeitet?

Der Plan

I Grundlegende Arbeitsschritte in Git
I Das Objektmodell – eine theoretische Grundlage
I Parallele Entwicklung: Branches und Merges
I Entwicklung koordinieren: Ein Branching-Modell
I Die Geschichte umschreiben: Rebase
I Verteiltes Git: Commits hoch- und runterladen
I Verschiedene Workflows

Motivation: Warum Versionskontrolle?

I Sicherheit: Versionskontrolle schützt vor Verlusten
I Dokumentation: Wer hat wann was gemacht?
I Fokussierung: Entwicklung logisch gliedern
I Kollaboration: Mit anderen Leuten an den gleichen Dateien

arbeiten
I Partizipation: Jeder kann mitmachen (GitHub etc.)

Interface

Wer bin ich? – Name und E-Mail einstellen

I Für alle Projekte (wird in ˜/.gitconfig gespeichert)
I git config --global user.name "Max Mustermann"
I git config --global user.email max@mustermann.de

I ... oder alternativ nur für das aktuelle Projekt:
I git config user.email maintainer@cool-project.org

I Außerdem, für die, die wollen: Farbe!
I git config --global color.ui auto

Ein Projekt importieren oder erstellen

I Ein neues Projekt erstellt man wie folgt:
I mkdir projekt
I cd projekt
I git init

I Um ein bestehendes Projekt zu importieren, »klont« man es
mit seiner gesamten Versionsgeschichte:

I git clone git@github.com:fsi-hska/git-workshop.git

Begriffsbildung

I Index/Staging Area: Bereich zwischen dem
Arbeitsverzeichnis und dem Repository, in die Änderungen für
den nächsten Commit gesammelt werden

I Commit: Eine Änderung an einer oder mehrerer Dateien,
versehen mit Metadaten wie Autor, Datum und Beschreibung

I Repository: Eine Datenbank für Commits, dort wird die
Versionsgeschichte aufgezeichnet

I Referenz: Jeder Commit wird durch eine eindeutige
SHA1-Summe identifiziert. Eine Referenz »zeigt« auf einen
bestimmten Commit

I Branch: Ein »Zweig«, eine Abzweigung im
Entwicklungszyklus, z. B. um ein neues Feature einzuführen.

Ein typischer Arbeitsablauf

I Eine datei verändern, und die Änderungen in das Repository
»einchecken«:

1. $EDITOR datei

2. git status

3. git add datei

4. git commit -m ’datei angepasst’

5. git show

Index / Staging Area

I Im Index bzw. der Staging-Area werden Veränderungen für
den nächsten Commit vorgemerkt

I So kann der Inhalt von einem Commit schrittweise aus
einzelnen Veränderungen zusammengestellt werden

Ausgangsstellung

I Alle auf dem gleichen Stand

Veränderungen machen

I Veränderungen werden im Working-Tree gemacht

Dem Index hinzufügen – git add

I Die Veränderungen im Working-Tree → Index

Einen Commit erzeugen – git commit

I Alle Veränderungen im Index → Commit

Resultat

I Alle wieder auf dem gleichen Stand

Referenzen und ignorierte Dateien

Relative Referenzen:
I HEAD: Der letzte Commit (wird per git show angezeigt)
I HEAD∧: Der vorletzte Commit
I HEAD~N : Der N.-letzte Commit

Informationen über das Repository erhalten

I Den jüngsten Commit im vollen Umfang anschauen:
I git show

I Die gesamte Versionsgeschichte, die zum aktuellen Zustand
führt, anzeigen:

I git log

I Was hat sich verändert?
I git diff

I Das Repository visualisieren:
I gitk
I gitg

I ... oder textbasiert:
I tig

Änderungen rückgängig machen

Einen neuen Commit erstellen, der eine alte Änderung rückgängig
macht:

I git revert commit

Den Index zurücksetzen:
I git reset HEAD

Den Zustand von vor zwei Commits wiederherstellen:
I git checkout HEAD~2

Die letzten zwei Commits unwiederbringlich löschen:
I git reset --hard HEAD~2

Branches: Abzweigungen

Wir arbeiten schon die ganze Zeit im master-Branch!

Was genau sind Branches? – Nichts anderes als Referenzen auf
den jeweils obersten Commit einer Versionsgeschichte.

Branches ...
I erstellen: git branch name
I auschecken: git checkout name
I erstellen und direkt auschecken: git checkout -b name
I auflisten: git branch -v
I löschen: git branch -d name

Idealisierter Workflow: Ein Branch pro neuem Feature oder Bugfix.

Beispiel: Zwei Branches

Zwei Branches erstellen, und auf jedem einen Commit machen.
Dann das Resultat in gitk anschauen.

I git branch eins
I git checkout eins
I Commit machen
I git checkout master
I git checkout -b zwei
I Commit machen
I gitk --all

Beispielprojekt: Was wollen wir speichern

Angenommen, wir wollen folgendes Verzeichnis speichern:

/
hello.py
README
test/

test.sh

Objektmodell
I Blob: Enthält den Inhalt einer Datei
I Tree: Eine Sammlung von Tree- und Blob-Objekten
I Commit: Besteht aus einer Referenz auf einen Tree mit

zusätzlichen Informationen
I Author und Commiter
I Parents
I Commit-Message

SHA-1 IDs

I Objekte werden mit SHA-1 IDs identifiziert
I Dies ist der Objekt-Name
I Wird aus dem Inhalt berechnet
I SHA-1 ist eine sogenannte Hash-Funktion; sie liefert für eine

Bit-Sequenz mit der maximalen Länge von 264 − 1 Bit (≈2
Exbibyte) in eine Hexadezimal-Zahl der Länge 40 (d. h. 160
Bits)

I Die resultierende Zahl ist eine von 2160(≈ 1.5 · 1049)
möglichen Zahlen und ziemlich einzigartig

Objektverwaltung

I Alle Objekte werden von Git in der Objektdatenbank (genannt
Repository) gespeichert

I Die Objekte sind durch ihre SHA-1 ID eindeutig adressierbar

I Für jede Datei erzeugt Git ein Blob-Objekt
I Für jedes Verzeichnis erzeugt Git ein Tree-Objekt
I Ein Tree-Objekt enthält die Referenzen (SHA1 IDs) auf die in

dem Verzeichnis enthaltenen Dateien

Zusammenfassung
Ein Git-Repository enthält Commits; diese wiederum referenzieren
Trees und Blobs, sowie ihren direkten Vorgänger

Commit Graph
Ein Repository ist ein Gerichteter Azyklischer Graph
Engl.: Directed Acyclic Graph (DAG)

Branches und Tags
Branches und Tags sind Zeiger auf Knoten in dem Graphen.
Engl.

Graph-Struktur

I Die gerichtete Graph-Struktur entsteht, da in jedem Commit
Referenzen auf direkte Vorfahren gespeichert sind

I Integrität kryptographisch gesichert

I Git-Kommandos manipulieren die Graph-Struktur

Merging: Branches Zusammenfügen

Simple Merge:
I git merge neues-feature

Fast-Forward Merge:
I Wird topic in master gemerget und topic basiert auf

master, dann wird kein Merge-Commit erstellt, sondern nur
der Zeiger »weitergerückt« bzw. »vorgespult«.

Vor dem Merge

I topic ist fertig und soll in master integriert werden

Nach dem Merge

I Im master ausführen: git merge topic

Vor dem Fast-Forward

I In master hat sich nichts getan, topic ist fertig

Nach dem Fast-Forward

I master wird »weitergerückt«, bzw. »vorgespult«

Hilfe, Konflikte!

Bei einem merge kann es zu Konflikten kommen. Wie geht man
damit um?

I $EDITOR konfliktdateien
I git add konfliktdateien
I git commit -m "Merge-Konflikt behoben"

Das Unterfangen abbrechen:
I git reset --hard HEAD

Einen Commit ändern

I Commit ändern = Neuen Commit erstellen, alten
wegschmeißen

I Den letzten Commit (HEAD) ändern:

1. $EDITOR datei

2. git add datei

3. git commit --amend

I Tiefer liegende Commits (HEAD~1 etc.) können so nicht
geändert werden!

Vor dem Rebase

I topic soll auf der neusten Version von master basieren

Nach dem Rebase

I git rebase master topic

Rebase: Auf eine neue Basis bauen

I Rebase: Einen Branch auf eine »neue Basis« stellen.

master als neue Basis für topic
git checkout topic
git rebase master

Alternativ
git rebase master topic

Rebasing: eine Warnung

I Wichtig: Man darf niemals Commits aus einem bereits
veröffentlichten Branch – auf dem also womöglich Andere ihre
Arbeit basieren – durch git rebase verändern!

I Daher: Nur Unveröffentlichtes gegen Veröffentlichtes
rebasen:

I git rebase origin/master
I git rebase v1.1.23

Hinaus in die weite Welt!

I Wir wollen unsere Arbeit mit der anderer Entwickler
austauschen!

I Durch die verteilte Architektur von git braucht es keinen
zentralen Server zu geben.

I Das Entwicklerteam muss sich auf einen Workflow einigen:
I Shared Repository
I Maintainer/Blessed Repository
I Patch-Queue per E-Mail
I ... oder auch alles durcheinandergemixt.

Zentralisiert

I Ein einziges zentrales Repository
I Alle Entwickler haben Schreibzugriff

Öffentliche Entwickler-Repositories

I Ein öffentliches Repository pro Entwickler
I Der Projektleiter integriert Verbesserungen

Patch-Queue per Email

I Stark vom Kernel und Git selbst verwendet

Remote Repositories / Remote Branches

Remote Repositories verwalten:
I git remote -v
I git remote add name url
I git remote rm name
I git remote update

I Fragt bei allen Remote Repositories an, ob es neue Commits
gibt. (Eigene Commits werden durch dieses Kommando nicht
veröffentlicht!)

Details der Repositories ändern (z. B. Vertipper):
I $EDITOR .git/config

Remote Branches auflisten:
I git branch -r

Remote Branches vs. Remote Tracking Branches

Fremden Code holen, eigenen versenden

Aus einem anderen Repository neuen Code »ziehen«:
I git pull remote branch

I git pull blessed master

Was hinter den Kulissen passiert:
1. git fetch remote branch

2. git merge remote/branch

Eigene Commits »pushen« oder per E-Mail senden:
I git push remote branch
I git format-patch seit-wann

Konventionen

I Wiederholter Einsatz von git pull erzeugt viele unnötige
Merges

I Konvention:
I Nicht im master entwickeln
I git remote update, master immer Fast-Forwarden
I Eigene Branches per merge in master integrieren

FF-Merge erzwingen
git merge --ff-only origin/master
git config --global alias.fm ’merge --ff-only’

GitHub – „Social Coding“

I GitHub stellt Git-Repositories zur Verfügung
I Kostenlos und viel genutzt
I Web-basiertes Interface
I Aktionen „Fork“, „Follow“ und „Watch“

I Account erstellen:
I → http://www.github.com
I Authentifizierung per SSH-Schlüssel (ggf. erstellen)

I Ein eigenes Repository hochladen:
I Repository auf GitHub erstellen
I git remote add github

ssh://git@github.com:user/projekt.git
I git push github master

HSKA und der Proxy

I ssh LocalForward
I ssh -L 9222:github.com:22

$USER@login.hs-karlsruhe.de
I git clone

ssh://localhost:22/fsi-hska/git-workshop.git
I SSH-ProxyCommand

I CL: ssh -o ProxyCommand="ssh -W %h:%p
mami1042@login.hs-karlsruhe.de" git@github.com

I ssh-config: ProxyCommand ssh -W %h:%p
mami1042@login.hs-karlsruhe.de

I http.proxy in der git-config
I git config –global http.proxy

http://mami1042:PASSWORD@proxy.hs-karlsruhe.de:8888

I ssh-Tunnel mit tsocks oder sshuttle (linux-only)

Kür: Was noch fehlt

I Rebase
I git stash
I Remote Branches löschen
I Git-Aliase
I Tags
I Reflog

Danke!

Vielen Dank für eure Teilnahme!

Fragen und Feedback gerne persönlich oder per Mail:

mail@nicidienase.de

Bonus-Folien

Rebase Interaktiv

I Das ist Advanced Git Magic – und will geübt sein!
I Rebase-Prozess anhalten, Commits »mittendrin« ändern,

weiterlaufen lassen

Interaktives Rebase
git rebase -i master topic

I Anwendungsfälle nur lokal und für die eigenen Commits
I Patch-Serie neu strukturieren
I Typos aus den eigenen Commits entfernen
I Offensichtliche Fehler glattbügeln

Rebase Interaktiv: Beispiele

Zwei Commits zusammenfassen
git rebase -i HEAD~n
→ pick des zweiten Commits durch fixup ersetzen

I Einen Commit verschieben: Die Zeilen vertauschen
I Einen Commit editieren: mit edit markieren
I Einen Commit aufteilen: Siehe Cheatsheet

Whitespace und EOL

I Was ist kaputter Whitespace?
I git diff --check (z. B. → Hook)

I Zeilenende: Windows (CRLF) vs. UNIX (LF)
I core.eol bestimmt, was zu tun ist: lf, crlf oder native
I Git-Attribut text für Dateien, die automatisch konvertiert

werden sollen
I echo ’*.c text’ > .gitattributes

I core.safecrlf: Konvertierung verbieten, wenn ein Mix aus
CRLF und LF vorhanden ist

I Mehr Infos: gitattributes(5)

